Характерные свойства  предельных  спиртов

Оглавление

  1. Электронное строение функциональных групп кислородсодержащих органических веществ (КОВ)
  2. Предельные одноатомные и многоатомные спирты
  3. Изомерия и номенклатура спиртов
  4. Физические свойства спиртов
  5. Химические свойства спиртов
  6. Отдельные представители спиртов и их значение
  7. Шпаргалка
  8. Задания для самопроверки

Электронное строение функциональных групп кислородсодержащих органических веществ (КОВ)

Прежде чем приступить к изучению спиртов необходимо разобраться с природой -OH группы и ее влияние на соседние атомы.

Функциональными груп­пами называются группы ато­мов, которые обуславливают характерные химические свой­ства данного класса веществ.

Строение молекул спир­тов R—OH. Атом кислорода, входящий в гидроксильную группу молекул спиртов, резко отличается от атомов водорода и углерода по способности притяги­вать и удерживать электронные пары. В молекулах спиртов имеются полярные связи C—O и O—H.

clip_image002

Учитывая полярность связи O—H и значительный положительный заряд на атоме водорода, говорят, что водород гидроксильной группы имеет «кислотный» характер. Этим он резко отли­чается от атомов водорода, вхо­дящих в углеводородный ради­кал. Атом кислорода гидро­ксильной группы имеет части­чный отрицательный заряд и две неподеленные электрон­ные пары, что дает возмож­ность молекулам спирта обра­зовывать водородные связи.

По химическим свойствам фенолы отличаются от спиртов, что вызвано взаимным влиянием в молекуле фенола гидроксильной группы и бензольного ядра (фенил — C6H5). Это влияние сводится к тому, что π-электроны бензольного ядра частично вовлекают в свою сферу неподеленные электронные пары атома кислорода гидроксильной группы, в результате чего уменьшается электронная плотность у атома кислорода. Это сни­жение компенсируется за счет большей поляризации связи О—Н, что в свою очередь приводит к увеличе­нию положительного заряда на атоме водорода:

clip_image003

Следовательно, водород гидроксильной группы в молекуле фенола имеет кислотный характер.

Влияние атомов в молекулах фенола и его про­изводных взаимно. Гидроксильная группа оказы­вает влияние на плотность π-электронного облака в бензольном кольце. Она понижается у атома угле­рода, связанного с ОН-группой (т. е. у 1-го и 3-го атомов углерода, метаположение) и повышается у соседних атомов углерода — 2, 4, 6-го — орто— и пара-положения.

Водородные атомы бензола в орто- и парапо­ложениях становятся более подвижными и легко замещаются на другие атомы и радикалы.

Альдегиды имеют общую формулу clip_image004, где карбонильная группа

clip_image005

Атом углерода в кар­бонильной группе sр3-гибридизорован. Атомы, не­посредственно с ним связанные, находятся в одной плоскости. Вследствие большой электроотрицательности атома кислорода по сравнению с угле­родным атомом связь C=O сильно поляризована за счет смещения электронной плотности π-связи к кислороду:

clip_image006

Под влиянием карбонильного атома углеро­да в альдегидах увеличивается полярность связи C—H, что повышает реакционноспособность этого атома H.

Карбоновые кислоты содержат функциональ­ноную группу

clip_image007

, называемую карбоксильной группой, или карбоксилом. Так она названа потому, что состоит из карбонильной группы

clip_image008

и гидроксильной —OH.

В карбоновых кислотах гидроксильная группа связана с углеводородным радикалом и карбониль­ной группой. Ослабление свя­зи между кислородом и водо­родом в гидроксильной группе объясняется разностью элек­троотрицательностей атомов углерода, кислорода и водоро­да. Атом углерода приобрета­ет некоторый положительный заряд. Этот атом углерода притягивает к себе электронное облако от атома кис­лорода гидроксильной группы. Компенсируя сме­щенную электронную плотность, атом кислорода гидроксильной группы оттягивает к себе электрон­ное облако соседнего атома водорода. Связь O—H в гидроксильной группе становится более полярной, и атом водорода приобретает большую подвижность.

Электронная формула этилового спирта

Электронная формула формальдегида

Строение карбоновой кислоты

Предельные одноатомные и многоатомные спирты

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп —ОН), соединенных с углеводородным радикалом.

Спирты

clip_image017

По числу гидроксильных групп (атомности) спир­ты делятся на:

· Одноатомные, например:

clip_image018

· Двухатомные (гликоли), например:

clip_image019

· Трехатомные, например:

clip_image020

По характеру углеводородного радикала выде­ляют следующие спирты:

· Предельные, содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

clip_image021

· Непредельные, содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

clip_image022

· Ароматические, т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосред­ственно, а через атомы углерода, например:

clip_image023

Органические вещества, содержащие в моле­куле гидроксильные группы, связанные непосред­ственно с атомом углерода бензольного кольца, су­щественно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятель­ный класс органических соединений — фенолы. Например:

clip_image024

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шести­атомный спирт гексанол (сорбит):

clip_image025

Изомерия и номенклатура спиртов

При образовании названий спиртов к назва­нию углеводорода, соответствующего спирту, до­бавляют (родовой) суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. — их число:

clip_image027

clip_image028

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

clip_image029

Начиная с третьего члена гомологического ря­да, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропа­нол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия — спирты изомерны простым эфирам:

clip_image030

Физические свойства спиртов

Спирты могут образовывать водородные связи как между молекулами спирта, так и между моле­кулами спирта и воды.

Физические свойства спиртов

Водородные связи возникают при взаимодей­ствии частично положительно заряженного атома водорода одной молекулы спирта и частично отри­цательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высо­кие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекуляр­ной массой 44 при обычных условиях является га­зом, а простейший из спир­тов — метанол, имея отно­сительную молекулярную мас­су 32, в обычных условиях — жидкость.

clip_image034

Химические свойства спиртов

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя угле­водородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаи­модействием и влиянием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксиль­ную группу необходимо сравнить свойства веще­ства, содержащего гидроксильную группу и угле­водородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержа­щего углеводородный радикал, — с другой. Таки­ми веществами могут быть, например, этанол (или другой спирт) и вода. Водород гидроксильной груп­пы молекул спиртов и молекул воды способен вос­станавливаться щелочными и щелочноземельными металлами (замещаться на них):

clip_image036

2. Взаимодействие спиртов с галогеноводоро­дами. Замещение гидроксильной группы на гало­ген приводит к образованию галогеналканов. На­пример:

clip_image038

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спир­та при нагревании в присутствии водоотнимающих средств:

clip_image039

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при на­гревании этилового спирта с серной кислотой до температуры от 100 до 140 °С образуется диэтило­вый (серный) эфир.

clip_image040

4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации):

clip_image041

Реакция этерификации катализируется силь­ными неорганическими кислотами.

Например, при взаимодействии этилового спир­та и уксусной кислоты образуется уксусноэтило­вый эфир — этилацетат:

clip_image042

5. Внутримолекулярная дегидратация спир­тов происходит при нагревании спиртов в присут­ствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водоро­да и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести ре­акцию получения этена (этилена) при нагревании этанола выше 140 °С в присутствии концентриро­ванной серной кислоты:

clip_image043

6. Окисление спиртов обычно проводят силь­ными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:

clip_image044

При окислении вторичных спиртов образуются кетоны:

clip_image045

Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (силь­ный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.

clip_image045[1]

7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные — в кетоны:

clip_image046

clip_image047

8. Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимодействии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

clip_image048

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Химические свойства спиртов - конспект

Химические свойства спиртов

Химические свойства спиртов

получение спиртов

Отдельные представители спиртов и их значение

clip_image054

Метанол (метиловый спирт CH3OH) — бесцветная жид­кость с характерным запа­хом и температурой кипения 64,7 °С. Горит чуть голубова­тым пламенем. Историческое название метанола — дре­весный спирт объясняется одним из путей его полу­чения способом перегонки твердых пород дерева (греч. methy — вино, опьянеть; hule — вещество, древесина).

clip_image055

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальде­гид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

clip_image056

Этанол (этиловый спирт C2H5OH) — бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола — «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт — важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме — ацетальдегид — крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью — циррозу печени.

clip_image057

Этандиол-1,2 (этиленгликоль) — бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже 0 °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей — антифризов для двигателей внутреннего сгорания.

clip_image058

Пролактриол-1,2,3 (глицерин) — вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошива- ние до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.

clip_image059

Низшие и средние члены ряда предельных одноатом­ных спиртов, содержащих от 1 до 11 атомов углерода, — жидкости. Высшие спирты (начиная с С12Н25ОН) при комнатной температуре — твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в во­де. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, а окта- нол уже не смешивается с водой.

Шпаргалка

Шпаргалка спирты

Справочный материал для прохождения тестирования:

2 КОММЕНТАРИИ

  1. Думаю вопросы по этой теме точно будут встречаться в ЕГЭ по химии, отличная подготовка к нему.

  2. Чем больше я читаю вас, тем больше понимаю, что меня в школе ничему не научили. Мы вообще не затрагивали тематику свойств предельных спиртов, а на ЕГЭ то все это будет!

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here